Using the Z pattern to improve the design of data visualizations
Code
This is where we started before the episode
library(tidyverse)
library(readxl)
nmds <- read_tsv(file="raw_data/schubert.braycurtis.nmds_2d.axes")
metadata <- read_excel(path="raw_data/schubert.metadata.xlsx")
metadata_nmds <- inner_join(metadata, nmds, by=c('sample_id'='group')) %>%
mutate(disease_stat = factor(disease_stat,
levels=c("DiarrhealControl",
"Case",
"NonDiarrhealControl")
)
)
ggplot(metadata_nmds,
aes(x=axis1, y=axis2, color=disease_stat, fill=disease_stat)) +
stat_ellipse(geom="polygon",type="norm", level=0.75, alpha=0.2, show.legend=F) +
geom_point() +
coord_fixed(xlim=c(-0.8, 0.8), ylim=c(-0.8, 0.8)) +
labs(x="NMDS Axis 1",
y="NMDS Axis 2") +
scale_color_manual(name=NULL,
breaks=c("NonDiarrhealControl", "DiarrhealControl", "Case"),
values=c("gray", "blue", "red"),
labels=c("Healthy", "Diarrhea", "C. difficile positive")
)+
scale_fill_manual(name=NULL,
breaks=c("NonDiarrhealControl", "DiarrhealControl", "Case"),
values=c("lightgray", "dodgerblue", "pink"),
labels=c("Healthy", "Diarrhea", "C. difficile positive")
)+
theme_classic() +
theme(
legend.key.size = unit(0.25, "cm"),
legend.position = c(1.0, 0.95),
legend.background = element_rect(fill="white", color="black"),
legend.margin = margin(t=-2, r=3, b=3, l=3),
plot.margin = margin(l=1, r=4, unit="lines")
)
ggsave("schubert_nmds.tiff", width=5, height=4)