Learning to use the patchwork R package (how to learn a package in general) (CC099)
Code
This is where we started before the episode
library(tidyverse)
library(readxl)
library(glue)
library(ggtext)
library(cowplot)
set.seed(19760620)
metadata <- read_excel(path="raw_data/schubert.metadata.xlsx", na="NA") %>%
mutate(disease_stat = factor(disease_stat,
levels=c("NonDiarrhealControl",
"DiarrhealControl",
"Case")
)
)
alpha_diversity <- read_tsv("raw_data/schubert.groups.ave-std.summary") %>%
filter(method == "ave") %>%
select(-label, -method)
metadata_alpha <- inner_join(metadata, alpha_diversity,
by=c('sample_id'='group')
)
healthy_color <- "#BEBEBE"
diarrhea_color <- "#0000FF"
case_color <- "#FF0000"
disease_count <- metadata_alpha %>%
count(disease_stat)
healthy_n <- disease_count %>%
filter(disease_stat == "NonDiarrhealControl") %>%
pull(n)
diarrhea_n <- disease_count %>%
filter(disease_stat == "DiarrhealControl") %>%
pull(n)
case_n <- disease_count %>%
filter(disease_stat == "Case") %>%
pull(n)
kt <- kruskal.test(invsimpson ~ disease_stat, data=metadata_alpha)
if(kt$p.value < 0.05){
pt <- pairwise.wilcox.test(metadata_alpha$invsimpson,
g=metadata_alpha$disease_stat,
p.adjust.method = "BH")
}
strip_chart <- metadata_alpha %>%
ggplot(aes(x=disease_stat, y=invsimpson, fill=disease_stat)) +
stat_summary(fun = median, show.legend=FALSE, geom="crossbar") +
geom_jitter(show.legend=FALSE, width=0.25, shape=21, color="black") +
labs(x=NULL,
y="Inverse Simpson Index") +
scale_x_discrete(breaks=c("NonDiarrhealControl","DiarrhealControl","Case"),
labels=c(glue("Healthy<br>(N={healthy_n})"),
glue("Diarrhea and<br>*C.difficile* negative<br>\\
(N={diarrhea_n})"),
glue("Diarrhea and<br>*C.difficile* positive<br>\\
(N={case_n})"))
) +
scale_fill_manual(name=NULL,
breaks=c("NonDiarrhealControl","DiarrhealControl","Case"),
labels=c("Healthy",
"Diarrhea and<br>*C.difficile* negative",
"Diarrhea and<br>*C.difficile* positive"),
values=c(healthy_color, diarrhea_color, case_color)) +
theme_classic() +
theme(axis.text.x = element_markdown(size=6)) +
geom_line(data=tibble(x=c(2, 3), y=c(23, 23)),
aes(x=x, y=y),
inherit.aes=FALSE) +
geom_line(data=tibble(x=c(1, 2.5), y=c(33, 33)),
aes(x=x, y=y),
inherit.aes=FALSE) +
geom_text(data=tibble(x=2.5, y=24),
aes(x=x, y=y, label="n.s."),
inherit.aes=FALSE) +
geom_text(data=tibble(x=1.75, y=33.5),
aes(x=x, y=y, label="*"), size=8,
inherit.aes=FALSE)
disease_invsimpson <- inner_join(metadata, alpha_diversity,
by=c('sample_id'='group')) %>%
select(disease_stat, invsimpson)
get_roc_data <- function(negative, positive){
disease_invsimpson %>%
filter(disease_stat == negative | disease_stat == positive) %>%
mutate(disease_stat = recode(disease_stat,
"{negative}" := FALSE,
"{positive}" := TRUE)) %>%
mutate(sens_spec = map(invsimpson, get_sens_spec, .)) %>%
unnest(sens_spec) %>%
mutate(comparison = glue("{negative}_{positive}"))
}
get_sens_spec <- function(x, data){
predicted <- x > data$invsimpson
tp <- sum(predicted & data$disease_stat)
tn <- sum(!predicted & !data$disease_stat)
fp <- sum(predicted & !data$disease_stat)
fn <- sum(!predicted & data$disease_stat)
specificity <- tn / (tn + fp)
sensitivity <- tp / (tp + fn)
tibble("sensitivity" = sensitivity, "specificity"=specificity)
}
roc_data <- bind_rows(
get_roc_data("NonDiarrhealControl", "DiarrhealControl"),
get_roc_data("NonDiarrhealControl", "Case"),
get_roc_data("DiarrhealControl", "Case")
) %>%
arrange(invsimpson)
pretty_names <- c("NonDiarrhealControl_Case" = "<strong style='color:#BEBEBE;'>Healthy</strong> vs. <br><strong style='color:#FF0000;'>*C. difficile* positive</strong>",
"NonDiarrhealControl_DiarrhealControl" = "<strong style='color:#BEBEBE;'>Healthy</strong> vs.<br><strong style='color:#0000FF;'>*C. difficile* negative</strong>",
"DiarrhealControl_Case" = "*C. difficile*<br><strong style='color:#0000FF;'>negative</strong> vs. <br><strong style='color:#FF0000;'>positive</strong>")
get_roc_curve <- function(test){
roc_data %>%
filter(comparison == test) %>%
ggplot(aes(x=1-specificity, sensitivity, group=comparison)) +
geom_abline(slope=1, intercept=0, color="gray") +
geom_line(size = 1, linejoin="round", color="black") +
labs(x="1-Specificity",
y="Sensitivity") +
theme_classic() +
theme(
legend.text = element_markdown(),
legend.key.height = unit(25, "pt"),
legend.position = c(0.8, 0.2)
) +
geom_richtext(data=tibble(x=0.75, y=0.15, label=pretty_names[test]),
aes(x=x, y=y, label=label), inherit.aes = FALSE,
fill=NA, label.color=NA)
}
ndc_c <- get_roc_curve("NonDiarrhealControl_Case")
dc_c <- get_roc_curve("DiarrhealControl_Case")
ndc_dc <- get_roc_curve("NonDiarrhealControl_DiarrhealControl")
plot_grid(strip_chart, ndc_dc, ndc_c, dc_c,
nrow=2, ncol=2, rel_widths = c(1, 1),
labels=c("A", "B", "C", "D"))
ggsave("schubert_fig_1.tiff", width=6.5, height=6)