Using the broom R package to easily perform thousands of statistical tests (CC112)
Code
This is where we started before the episode
library(tidyverse)
library(readxl)
library(ggtext)
library(glue)
metadata <- read_excel("raw_data/schubert.metadata.xlsx", na="NA") %>%
select(sample_id, disease_stat) %>%
drop_na(disease_stat)
otu_counts <- read_tsv("raw_data/schubert.subsample.shared") %>%
select(Group, starts_with("Otu")) %>%
rename(sample_id = Group) %>%
pivot_longer(-sample_id, names_to="otu", values_to = "count")
nseqs_per_sample <- otu_counts %>%
group_by(sample_id) %>%
summarize(N = sum(count), .groups="drop") %>%
count(N) %>%
pull(N)
stopifnot(length(nseqs_per_sample) == 1)
lod <- 100* 1/nseqs_per_sample
taxonomy <- read_tsv("raw_data/schubert.cons.taxonomy") %>%
select("OTU", "Taxonomy") %>%
rename_all(tolower) %>%
mutate(taxonomy = str_replace_all(taxonomy, "\\(\\d+\\)", ""),
taxonomy = str_replace(taxonomy, ";$", "")) %>%
separate(taxonomy,
into=c("kingdom", "phylum", "class", "order", "family", "genus"),
sep=";") %>%
mutate(pretty_otu = str_replace(string=otu,
pattern="tu0*",
replacement = "TU "),
genus = str_replace(string=genus,
pattern="(.*)",
replacement="*\\1*"),
genus = str_replace(string=genus,
pattern="\\*(.*)_unclassified\\*",
replacement="Unclassified<br>*\\1*"),
taxon = glue("{genus}<br>({pretty_otu})")) %>%
select(otu, taxon)
otu_rel_abund <- inner_join(metadata, otu_counts, by="sample_id") %>%
inner_join(., taxonomy, by="otu") %>%
group_by(sample_id) %>%
mutate(rel_abund = 100*count / sum(count)) %>%
ungroup() %>%
select(-count) %>%
mutate(disease_stat = factor(disease_stat,
levels=c("Case",
"DiarrhealControl",
"NonDiarrhealControl")))
taxon_pool <- otu_rel_abund %>%
group_by(disease_stat, taxon) %>%
summarize(median=median(rel_abund), .groups="drop") %>%
group_by(taxon) %>%
summarize(pool = max(median) < 0.5,
median = max(median),
.groups="drop")
inner_join(otu_rel_abund, taxon_pool, by="taxon") %>%
mutate(taxon = if_else(pool, "Other", as.character(taxon))) %>%
group_by(sample_id, disease_stat, taxon) %>%
summarize(rel_abund = sum(rel_abund),
median = max(median),
.groups="drop") %>%
mutate(taxon = factor(taxon),
taxon = fct_reorder(taxon, median, .desc=FALSE)) %>%
mutate(rel_abund = if_else(rel_abund == 0,
2/3 * lod,
rel_abund)) %>%
ggplot(aes(y=taxon, x=rel_abund, color=disease_stat)) +
geom_vline(xintercept = lod, size=0.2) +
stat_summary(fun.data=median_hilow, geom = "pointrange",
fun.args=list(conf.int=0.5),
position = position_dodge(width=0.6)) +
coord_trans(x="log10") +
scale_x_continuous(limits=c(NA, 100),
breaks=c(0.1, 1, 10, 100),
labels=c(0.1, 1, 10, 100)) +
scale_color_manual(name=NULL,
breaks=c("NonDiarrhealControl",
"DiarrhealControl",
"Case"),
labels=c("Healthy",
"Diarrhea,<br>*C. difficile* negative",
"Diarrhea,<br>*C. difficile* positive"),
values=c("gray", "blue", "red")) +
labs(y=NULL,
x="Relative Abundance (%)") +
theme_classic() +
theme(axis.text.y = element_markdown(),
legend.text = element_markdown(),
# legend.position = c(0.8, 0.6),
legend.background = element_rect(color="black", fill = NA),
legend.margin = margin(t=-5, r=3, b=3)
)
ggsave("schubert_otu.tiff", width=7, height=6)